SYNTHESIS OF 3-(ARYLHYDRAZONO)-

5,5-DI(HYDROXYMETHYL)-2-OXOMORPHOLINES

V. N. Bodnar, V. N. Britsun, and M. O. Lozinskii

Esters of (arylhydrazono)chloroacetic acid reacted with tris(hydroxymethyl)aminomethane in the presence of trimethylamine under mild conditions to give 3-(arylhydrazonoyl)-5,5-di(hydroxymethyl)-2-oxomorpholines.

Keywords: morpholine, esters of (arylhydrazono)chloroacetic acids, heterocyclization.

Esters of (arylhydrazono)chloroacetic acids are very reactive compounds which may be used as the starting materials for the synthesis of a variety of nitrogen-containing heterocyclic systems [1-6].

Previously we observed that ethyl (arylhydrazono)chloroacetates were converted to 1,4-diaryl-3,6-dicarbethoxy-1,4-dihydro-1,2,4,5-tetrazines on treatment with sodium ethoxide. In a continuation of this study we have established that ethyl (arylhydrazono)chloroacetates **1a-l** reacted with tris(hydroxymethyl)-aminomethane (**3**) in aqueous ethanol in the presence of triethylamine at 30-40°C by cyclization to give 3-(arylhydrazono)-5,5-bis(hydroxymethyl)-2-oxomorpholines (**5a-l**) (see Tables 1 and 2).

The characteristic ¹H NMR signals of the compounds synthesized are those of the morpholine ring (the CH₂ groups which appear as a singlet in the 4.31-4.42 ppm region, and the NH group which appears as a broad singlet in the 6.21-7.22 ppm region).

In agreement with other results [1,2] it may be concluded that the first stage is the formation of the nitrilimine **2**, which then reacts with tris(hydroxymethyl)aminomethane to give the intermediate **4** (similar (arylhydrazono)aminoacetates were isolated and characterized previously [6]). Evidently intramolecular condensation then occurs with the elimination of ethanol to form the 5,5-di-(hydroxymethyl)-2-oxomorpholines **5a-l**.

$$\begin{array}{c} Cl \\ Et_3N \\ \hline \\ 1a-l \end{array} \begin{array}{c} Et_3N \\ \hline \\ Et_3N \cdot HCl \end{array} \begin{array}{c} - \\ R \\ \hline \\ 2 \end{array} \begin{array}{c} - \\ N-N-C-C-OEt \\ \hline \\ R \\ \hline \\ 2 \end{array} \begin{array}{c} - \\ N-N-C-C-OEt \\ \hline \\ R \\ \hline \\ 3 \end{array} \begin{array}{c} - \\ N-N-C-C-OEt \\ \hline \\ R \\ \hline \\ 3 \end{array} \begin{array}{c} - \\ N-N-C-C-OEt \\ \hline \\ R \\ \hline \\ 2 \end{array} \begin{array}{c} - \\ N-N-C-C-OEt \\ \hline \\ R \\ \hline \\ 2 \end{array} \begin{array}{c} - \\ N-C-C-CH_2OH \\ \hline \\ CH_2OH \\ \hline$$

Institute of Organic Chemistry, Ukraine National Academy of Sciences, Kiev 02094; e-mail: iochkiev@ukrpack.net. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, 9180921, June, 2003. Original article submitted November 16, 2000; revision submitted May 25, 2001.

TABLE 1. Characteristics of Compounds 5a-1

Com- pound	Empirical formula	Found, % Calculated, %			mp, °C	M^{+}	Yield,
	Iomuia	С	Н	N			-70
5a	C ₁₂ H ₁₅ N ₃ O ₄	<u>54.09</u> 54.33	<u>5.44</u> 5.69	15.61 15.84	190-191	65	38
5b	$C_{13}H_{17}N_3O_4$	55.71 55.90	6.01 6.13	14.80 15.04	192-194	279	27
5c	$C_{12}H_{14}BrN_3O_4$	$\frac{41.50}{41.87}$	3.92 4.10	$\frac{11.90}{12.20}$	197-199	344	36
5d	$C_{12}H_{14}CIN_3O_4$	$\frac{47.77}{48.08}$	$\frac{4.57}{4.70}$	$\frac{13.84}{14.02}$	179-181	300	52
5e	$C_{12}H_{14}N_4O_6$	46.27 46.45	4.34 4.54	17.72 18.05	259-261	310	57
5f	$C_{12}H_{14}N_4O_6$	46.39 46.45	$\frac{4.25}{4.54}$	$\frac{18.19}{18.05}$	185-187	310	52
5g	C ₁₂ H ₁₃ Cl ₂ N ₃ O ₄	42.70 43.11	3.97 3.89	$\frac{12.39}{12.57}$	213-215	334	46
5h	C ₁₂ H ₁₃ BrN ₄ O ₆	37.50 37.03	3.51 3.36	14.21 14.39	198-200	389	40
5i	C ₁₂ H ₁₃ ClN ₄ O ₆	$\frac{41.70}{41.81}$	$\frac{3.63}{3.80}$	16.11 16.25	187-189	345	31
5j	C ₁₃ H ₁₆ ClN ₃ O ₄	49.57 49.77	4.93 5.14	13.01 13.39	215-218	314	32
5k	C ₁₃ H ₁₃ ClF ₃ N ₃ O ₄	$\frac{42.50}{42.46}$	$\frac{3.41}{3.56}$	$\frac{11.30}{11.42}$	183-185	368	38
51	C ₁₄ H ₁₈ N ₄ O ₇	47.60 47.46	<u>5.31</u> 5.12	15.63 15.82	182-183	354	24

It is known that hydrazones can exist in *syn* and *anti* forms in consequence of the *sp*²-hybridization of the imino nitrogen atom, while in the case of hydrazones of α-carbonyl compounds *s-cis* and *s-trans* conformations are possible in consequence of hindered rotation around the =C-C= bond which, as a result of conjugation has a partial double bond character. However it can be concluded from the ¹H NMR spectroscopic data that the 3-(arylhydrazono)-5,5-di(hydroxymethyl)-2-oxomorpholines **5a-l** exist in only one conformation. Hence it can be proposed that in this case compounds **5a-l** are formed in the *syn-s-cis* form which is stabilized by an intramolecular hydrogen bond N-H···O=C analogous to the arylhydrazone, the structure of which we investigated previously [9].

TABLE 2. ¹H NMR Spectra of Compounds **5a-l**

Com- pound	Chemical shifts, δ, ppm (JHz)*							
	<u>CH</u> ₂ OH (4H, s)	CH ₂ O (2H, s)	OH (2H, s)	NH _{Het} (1H, s)	Ar	Ar-NH=N (1H, s)		
1	2	3	4	5	6	7		
5a	3.43	4.31	5.32	6.33	7.03-7.22 (5H, m, C ₆ H ₅)	9.05		
5b	3.42	4.31	5.14	6.21	6.92 (2H, d, $J = 10.2$, p -C ₆ H ₄); 7.05 (2H, d, $J = 10.2$, p -C ₆ H ₄)	8.93		
5c	3.41	4.32	5.24	6.34	6.98 (2H, d, <i>J</i> = 8.7, <i>p</i> -C ₆ H ₄); 7.33 (2H, d, <i>J</i> = 8.7, <i>p</i> -C ₆ H ₄)	9.16		
5d	3.38	4.32	5.10	6.34	7.01 (2H. d, $J = 10.8$, p -C ₆ H ₄); 7.25 (2H, d, $J = 10.8$, p -C ₆ H ₄)	9.19		
5e	3.49	4.37	5.30	6.84	7.13 (2H, d, $J = 8.6$, p -C ₆ H ₄); 8.15 (2H, d, $J = 8.6$, p -C ₆ H ₄)	10.03		

TABLE 2 (continued)

1	2	3	4	5	6	7
5f	3.52	4.42	5.11	7.22	6.93 (1H, t, <i>J</i> = 10.5, <i>o</i> -C ₆ H ₄); 7.62-7.83 (2H, m, <i>o</i> -C ₆ H ₄); 8.07 (1H, d, <i>J</i> = 10.5, <i>o</i> -C ₆ H ₄)	10.14
5g	3.46	4.33	5.16	6.41	6.92 (1H, d, <i>J</i> = 8.8, 3,4-C ₆ H ₃); 7.19 (1H, s, 3,4-C ₆ H ₃); 7.41 (1H, d, <i>J</i> = 8.8, 3,4-C ₆ H ₃)	9.39
5h	3.49	4.38	5.21	6.83	7.27 (1H, d, <i>J</i> = 9.6, 2,4-C ₆ H ₃); 7.41 (1H, s, 2,4-C ₆ H ₃); 8.15 (1H, d, <i>J</i> = 9.6, 2,4-C ₆ H ₃)	10.27
5i	3.50	4.42	5.15	6.19	7.72 (1H, d, <i>J</i> = 9.5, 2,5-C ₆ H ₃); 7.87 (1H, d, <i>J</i> = 9.5, 2,5-C ₆ H ₃); 8.09 (1H, s, 2.5-C ₆ H ₃)	10.15
5j	3.45	4.31	5.13	6.29	6.87 (1H, d, <i>J</i> = 7.8, 3,4-C ₆ H ₃); 7.08 (1H, s, 3,4-C ₆ H ₃); 7.15 (1H, d, <i>J</i> = 7.8, 3,4-C ₆ H ₃)	9.14
5k	3.47	4.38	5.15	7.18	7.01 (1H, d, <i>J</i> = 10.1, 2,5-C ₆ H ₃); 7.59 (1H, d, <i>J</i> = 10.1, 2,5-C ₆ H ₃)	8.84
51	3.51	4.41	5.11	7.12	7.41 (1H, d, <i>J</i> = 12.1, 2,4-C ₆ H ₃); 7.53 (1H, s, 2,4-C ₆ H ₃); 7.78 (1H, d, <i>J</i> = 12.1, 2,4-C ₆ H ₃)	10.05

^{*} Protons of other groups: **5b** 2.20 (3H, s, CH₃); **5j** 2.23 (3H, s, CH₃); **5l** 1.33 (3H, t, J = 10.1, OCH₂CH₃); 4.07 (2H, d, OCH₂CH₃).

It should be noted that the yields of the 5,5-di(hydroxymethyl)-2-oxomorpholines **5a-l** depend to a considerable extent on the nature of the substituent in the aromatic ring. Thus the greatest yields (31-57%) were observed for compounds with electron-acceptor substituents in the aromatic ring (nitro and trifluoromethyl groups, halogens), while the minimal yields (27-38%) occur in the case of electron-donor substituents (hydrogen, methyl), while in the case of the methoxy group heterocyclization does not occur at all, most probably because of low activity of the corresponding nitrilimine **2**.

EXPERIMENTAL

¹H NMR spectra of DMSO-d₆ solutons with TMS as internal standard were recorded with a Varian-300 machine (300 MHz). Mass spectra were recorded with a MX-1303 machine.

Ethyl (phenylhydrazono)chloroacetates 1a-l were synthesized by a known method [10].

3-(Arylhydrazono)-5,5-di(hydroxymethyl)-2-oxomorpholines (5a-l). A mixture of tris(hydroxymethyl)aminomethane (0.01 mol) and triethylamine (0.01 mol) in 60% aqueous ethanol (30 ml) was added dropwise at 30-40°C over 30 min to a stirred solution of an ethyl (phenylhydrazono)chloroacetate (0.01 mol) in ethanol (100 ml). The reaction mixture was stirred at this temperature for 3-5 h and the solvent was then removed to dryness. The residue was washed with water (2×30 ml), dried, washed with benzene (2×30 ml), dried, and recrystallized from ethanol.

REFERENCES

- 1. N. A. Terent'eva, M. L. Petrov, K. A. Potekhin, Yu. T. Struchkov, and V. A. Galishev, *Zh. Org. Khim.*, **30**, 344 (1994).
- 2. M. Abramov and M. L. Petrov, Zh. Obshch. Khim., 65, 308 (1995).

- 3. A. O. Abdelhamid, H. F. Zohdi, and N. M. Rateb, *J. Chem. Res. (S)*, **4**, 144 (1995); *Chem. Abstr.*, **123**, 32002 (1995).
- 4. A. K. Mansour, N. M. Elwan, H. A. Abdelhadi, T. A. Abdallah, and H. M. Hassaneen, *Sulfur. Lett.*, **18**, 105 (1995); *Chem. Abstr.*, **124**, 317107 (1996).
- 5. H. A. Albar, J. Chem. Res. (S), 7, 316 (1996); Chem. Abstr., 125, 275047 (1996).
- 6. R. Fusco and G. Bianchetti, *Gazz. Chim. Ital.*, **87**, 438 (1957).
- 7. M. O. Lozinskii, V. N. Bondar, S. V. Konovalikhin, O. A. D'yachenko, and L. O. Atovmyan, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 2635 (1990).
- 8. Yu. P. Kitaev and B. I. Buzykin, *Hydrazones* [in Russian], Nauka, Moscow (1974), 56.
- 9. Yu. A. Sokolova, O. A. D'yachenko, L. O. Atovmyan, V. N. Bondar, and M. O. Lozinskii, *Zh. Struktur. Khim.*, **30**, 141 (1989).
- 10. M. O. Lozinskii, S. N. Kukota, and P. S. Pel'kis, *Ukr. Khim. Zh.*, **33**, 1295 (1967).